508 research outputs found

    Increased chromosomal radiosensitivity in asymptomatic carriers of a heterozygous BRCA1 mutation

    Get PDF
    Background: Breast cancer risk increases drastically in individuals carrying a germline BRCA1 mutation. The exposure to ionizing radiation for diagnostic or therapeutic purposes of BRCA1 mutation carriers is counterintuitive, since BRCA1 is active in the DNA damage response pathway. The aim of this study was to investigate whether healthy BRCA1 mutations carriers demonstrate an increased radiosensitivity compared with healthy individuals. Methods: We defined a novel radiosensitivity indicator (RIND) based on two endpoints measured by the G2 micronucleus assay, reflecting defects in DNA repair and G2 arrest capacity after exposure to doses of 2 or 4 Gy. We investigated if a correlation between the RIND score and nonsense-mediated decay (NMD) could be established. Results: We found significantly increased radiosensitivity in the cohort of healthy BRCA1 mutation carriers compared with healthy controls. In addition, our analysis showed a significantly different distribution over the RIND scores (p = 0.034, Fisher’s exact test) for healthy BRCA1 mutation carriers compared with non-carriers: 72 % of mutation carriers showed a radiosensitive phenotype (RIND score 1–4), whereas 72 % of the healthy volunteers showed no radiosensitivity (RIND score 0). Furthermore, 28 % of BRCA1 mutation carriers had a RIND score of 3 or 4 (not observed in control subjects). The radiosensitive phenotype was similar for relatives within several families, but not for unrelated individuals carrying the same mutation. The median RIND score was higher in patients with a mutation leading to a premature termination codon (PTC) located in the central part of the gene than in patients with a germline mutation in the 5β€² end of the gene. Conclusions: We show that BRCA1 mutations are associated with a radiosensitive phenotype related to a compromised DNA repair and G2 arrest capacity after exposure to either 2 or 4 Gy. Our study confirms that haploinsufficiency is the mechanism involved in radiosensitivity in patients with a PTC allele, but it suggests that further research is needed to evaluate alternative mechanisms for mutations not subjected to NMD

    Single-ion magnetism in the extended solid-state: insights from X-ray absorption and emission spectroscopy.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2020-10-01, epub 2020-10-07Publication status: PublishedLarge single-ion magnetic anisotropy is observed in lithium nitride doped with iron. The iron sites are two-coordinate, putting iron doped lithium nitride amongst a growing number of two coordinate transition metal single-ion magnets (SIMs). Uniquely, the relaxation times to magnetisation reversal are over two orders of magnitude longer in iron doped lithium nitride than other 3d-metal SIMs, and comparable with high-performance lanthanide-based SIMs. To understand the origin of these enhanced magnetic properties a detailed characterisation of electronic structure is presented. Access to dopant electronic structure calls for atomic specific techniques, hence a combination of detailed single-crystal X-ray absorption and emission spectroscopies are applied. Together K-edge, L2,3-edge and KΞ² X-ray spectroscopies probe local geometry and electronic structure, identifying iron doped lithium nitride to be a prototype, solid-state SIM, clean of stoichiometric vacancies where Fe lattice sites are geometrically equivalent. Extended X-ray absorption fine structure and angular dependent single-crystal X-ray absorption near edge spectroscopy measurements determine FeI dopant ions to be linearly coordinated, occupying a D 6h symmetry pocket. The dopant engages in strong 3dΟ€-bonding, resulting in an exceptionally short Fe-N bond length (1.873(7) Γ…) and rigorous linearity. It is proposed that this structure protects dopant sites from Renner-Teller vibronic coupling and pseudo Jahn-Teller distortions, enhancing magnetic properties with respect to molecular-based linear complexes. The Fe ligand field is quantified by L2,3-edge XAS from which the energy reduction of 3d z 2 due to strong 4s mixing is deduced. Quantification of magnetic anisotropy barriers in low concentration dopant sites is inhibited by many established methods, including far-infrared and neutron scattering. We deduce variable temperature L3-edge XAS can be applied to quantify the J = 7/2 magnetic anisotropy barrier, 34.80 meV (∼280 cm-1), that corresponds with Orbach relaxation via the first excited, M J = Β±5/2 doublet. The results demonstrate that dopant sites within solid-state host lattices could offer a viable alternative to rare-earth bulk magnets and high-performance SIMs, where the host matrix can be tailored to impose high symmetry and control lattice induced relaxation effects

    Computer-assisted versus non-computer-assisted preoperative planning of corrective osteotomy for extra-articular distal radius malunions: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malunion is the most common complication of distal radius fracture. It has previously been demonstrated that there is a correlation between the quality of anatomical correction and overall wrist function. However, surgical correction can be difficult because of the often complex anatomy associated with this condition. Computer assisted surgical planning, combined with patient-specific surgical guides, has the potential to improve pre-operative understanding of patient anatomy as well as intra-operative accuracy. For patients with malunion of the distal radius fracture, this technology could significantly improve clinical outcomes that largely depend on the quality of restoration of normal anatomy. Therefore, the objective of this study is to compare patient outcomes after corrective osteotomy for distal radius malunion with and without preoperative computer-assisted planning and peri-operative patient-specific surgical guides.</p> <p>Methods/Design</p> <p>This study is a multi-center randomized controlled trial of conventional planning versus computer-assisted planning for surgical correction of distal radius malunion. Adult patients with extra-articular malunion of the distal radius will be invited to enroll in our study. After providing informed consent, subjects will be randomized to two groups: one group will receive corrective surgery with conventional preoperative planning, while the other will receive corrective surgery with computer-assisted pre-operative planning and peri-operative patient specific surgical guides. In the computer-assisted planning group, a CT scan of the affected forearm as well as the normal, contralateral forearm will be obtained. The images will be used to construct a 3D anatomical model of the defect and patient-specific surgical guides will be manufactured. Outcome will be measured by DASH and PRWE scores, grip strength, radiographic measurements, and patient satisfaction at 3, 6, and 12 months postoperatively.</p> <p>Discussion</p> <p>Computer-assisted surgical planning, combined with patient-specific surgical guides, is a powerful new technology that has the potential to improve the accuracy and consistency of orthopaedic surgery. To date, the role of this technology in upper extremity surgery has not been adequately investigated, and it is unclear whether its use provides any significant clinical benefit over traditional preoperative imaging protocols. Our study will represent the first randomized controlled trial investigating the use of computer assisted surgery in corrective osteotomy for distal radius malunions.</p> <p>Trial registration</p> <p>NCT01193010</p

    Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment

    Get PDF
    Normal tissue reactions to radiation therapy vary in severity among patients and cannot be accurately predicted, limiting treatment doses. The existence of heritable radiosensitivity syndromes suggests that normal tissue reaction severity is determined, at least in part, by genetic factors and these may be revealed by differences in gene expression. To test this hypothesis, peripheral blood lymphocyte cultures from 22 breast cancer patients with either minimal (11) or very severe acute skin reactions (11) have been used to analyse gene expression. Basal and post-irradiation expression of four radiation-responsive genes (CDKN1A, GADD45A, CCNB1, and BBC3) was determined by quantitative real-time PCR in T-cell cultures established from the two patient groups before radiotherapy. Relative expression levels of BBC3, CCNB1, and GADD45A 2 h following 2 Gy X-rays did not discriminate between groups. However, post-irradiation expression response was significantly reduced for CDKN1A (P<0.002) in severe reactors compared to normal. Prediction of reaction severity of ∼91% of individuals sampled was achieved using this end point. Analysis of TP53 Arg72Pro and CDKN1A Ser31Arg single nucleotide polymorphisms did not show any significant association with reaction sensitivity. Although these results require confirmation and extension, this study demonstrates the possibility of predicting the severity of acute skin radiation toxicity in simple tests

    Constitutive gene expression profile segregates toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy

    Get PDF
    Breast cancer patients show a wide variation in normal tissue reactions after radiotherapy. The individual sensitivity to x-rays limits the efficiency of the therapy. Prediction of individual sensitivity to radiotherapy could help to select the radiation protocol and to improve treatment results. The aim of this study was to assess the relationship between gene expression profiles of ex vivo un-irradiated and irradiated lymphocytes and the development of toxicity due to high-dose hyperfractionated radiotherapy in patients with locally advanced breast cancer. Raw data from microarray experiments were uploaded to the Gene Expression Omnibus Database (GEO accession GSE15341). We obtained a small group of 81 genes significantly regulated by radiotherapy, lumped in 50 relevant pathways. Using ANOVA and t-test statistical tools we found 20 and 26 constitutive genes (0 Gy) that segregate patients with and without acute and late toxicity, respectively. Non-supervised hierarchical clustering was used for the visualization of results. Six and 9 pathways were significantly regulated respectively. Concerning to irradiated lymphocytes (2 Gy), we founded 29 genes that separate patients with acute toxicity and without it. Those genes were gathered in 4 significant pathways. We could not identify a set of genes that segregates patients with and without late toxicity. In conclusion, we have found an association between the constitutive gene expression profile of peripheral blood lymphocytes and the development of acute and late toxicity in consecutive, unselected patients. These observations suggest the possibility of predicting normal tissue response to irradiation in high-dose non-conventional radiation therapy regimens. Prospective studies with higher number of patients are needed to validate these preliminary results

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fbβˆ’1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fbβˆ’1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via tΛœβ†’tΟ‡Λœ01 or tΛœβ†’ bΟ‡ΛœΒ±1 β†’bW(βˆ—)Ο‡Λœ01 , where Ο‡Λœ01 (Ο‡ΛœΒ±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ β†’ tΟ‡Λœ01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for Ο‡Λœ01 masses below 30 GeV. For a branching fraction of 50% to either t˜ β†’ tΟ‡Λœ01 or t˜ β†’ bΟ‡ΛœΒ±1 , and assuming the Ο‡ΛœΒ±1 mass to be twice the Ο‡Λœ01 mass, top squark masses in the range 250–550 GeV are excluded for Ο‡Λœ01 masses below 60 GeV

    Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway is a critical signal transduction pathway that regulates multiple cellular functions. Aberrant activation of this pathway has been identified in a wide range of cancers. Several pathway components including AKT, PI3K and mTOR represent potential therapeutic targets and many small molecule inhibitors are in development or early clinical trials. The complex regulation of the pathway, together with the multiple mechanisms by which it can be activated, make this a highly challenging pathway to target. For successful inhibition, detailed molecular information on individual tumours will be required and it is already clear that different tumour types show distinct combinations of alterations. Recent results have identified alterations in pathway components PIK3CA, PTEN, AKT1 and TSC1 in bladder cancer, some of which are significantly related to tumour phenotype and clinical behaviour. Co-existence of alterations to several PI3K pathway genes in some bladder tumours indicates that these proteins may have functions that are not related solely to the known canonical pathway

    H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype

    Get PDF
    BACKGROUND: About 1-5% of cancer patients suffer from significant normal tissue reactions as a result of radiotherapy (RT). It is not possible at this time to predict how most patients' normal tissues will respond to RT. DNA repair dysfunction is implicated in sensitivity to RT particularly in genes that mediate the repair of DNA double-strand breaks (DSBs). Phosphorylation of histone H2AX (phosphorylated molecules are known as gammaH2AX) occurs rapidly in response to DNA DSBs, and, among its other roles, contributes to repair protein recruitment to these damaged sites. Mammalian cell lines have also been crucial in facilitating the successful cloning of many DNA DSB repair genes; yet, very few mutant cell lines exist for non-syndromic clinical radiosensitivity (RS).\ud \ud METHODS: Here, we survey DNA DSB induction and repair in whole cells from RS patients, as revealed by gammaH2AX foci assays, as potential predictive markers of clinical radiation response.\ud \ud RESULTS: With one exception, both DNA focus induction and repair in cell lines from RS patients were comparable with controls. Using gammaH2AX foci assays, we identified a RS cancer patient cell line with a novel ionising radiation-induced DNA DSB repair defect; these data were confirmed by an independent DNA DSB repair assay.\ud \ud CONCLUSION: gammaH2AX focus measurement has limited scope as a pre-RT predictive assay in lymphoblast cell lines from RT patients; however, the assay can successfully identify novel DNA DSB repair-defective patient cell lines, thus potentially facilitating the discovery of novel constitutional contributions to clinical RS
    • …
    corecore